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ABSTRACT

High-resolution gridded datasets are in high demand because they are spatially complete and include
important Þnescale details. Previous assessments have been limited to two to three gridded datasets or an-
alyzed the datasets only at the station locations. Here, eight high-resolution gridded temperature datasets are
assessed two ways: at the stations, by comparing with Global Historical Climatology NetworkÐDaily data; and
away from the stations, using physical principles. This assessment includes six station-based datasets, one
interpolated reanalysis, and one dynamically downscaled reanalysis. California is used as a test domain be-
cause of its complex terrain and coastlines, features known to differentiate gridded datasets. As expected,
climatologies of station-based datasets agree closely with station data. However, away from stations, spread in
climatologies can exceed 68C. Some station-based datasets are very likely biased near the coast and in
complex terrain, due to inaccurate lapse rates. Many station-based datasets have large unphysical trends
(. 18C decade2 1) due to unhomogenized or missing station dataÑan issue that has been Þxed in some datasets
by using homogenization algorithms. Meanwhile, reanalysis-based gridded datasets have systematic biases
relative to station data. Dynamically downscaled reanalysis has smaller biases than interpolated reanalysis,
and has more realistic variability and trends. Dynamical downscaling also captures snowÐalbedo feedback,
which station-based datasets miss. Overall, these results indicate that 1) gridded dataset choice can be a
substantial source of uncertainty, and 2) some datasets are better suited for certain applications.

1. Introduction

High-resolution gridded temperature datasets are
widely used because they are spatially complete and
include Þnescale variations due to topography and other
features. Such detail is important for many modeling
applications in Þelds such as hydrology, ecology, and
agriculture (Thornton et al. 1997; Mote et al. 2005;
Abatzoglou 2013; Stoklosa et al. 2015). Gridded datasets
are also used to compute historical trends (e.g.,Hamlet
and Lettenmaier 2005; Vose et al. 2014), evaluate re-
gional climate models (e.g.,Caldwell et al. 2009; Walton
et al. 2015), and train statistical models to downscale
low-resolution climate information to higher resolution
(e.g.,Hidalgo et al. 2009; Pierce et al. 2014).

There are a variety of approaches for generating high-
resolution gridded temperature data. One approach is to

interpolate or smooth data from irregularly spaced sta-
tions to a regular grid. Datasets generated in this manner
are termed ÔÔstation basedÕÕ datasets. A key distinction
between these datasets is that some datasets Þt smooth
temperature curves to the station data (e.g.,Thornton
et al. 1997; Hijmans et al. 2005), while others use in-
terpolation algorithms that seek to match observations
exactly at the station locations (e.g.,Maurer et al. 2002;
Hamlet and Lettenmaier 2005; Livneh et al. 2013).
Some incorporate knowledge of physical processes
into the interpolation method, essentially creating a
simple model of temperature variations between sta-
tion locations (e.g., Daly et al. 2008; Vose et al. 2014;
Oyler et al. 2015a). A challenge with station data is
that changes in station siting, instrumentation, and time
of observation add nonclimatic artifacts to the data
(Menne and Williams 2009). Some datasets correct for
these inhomogeneities (e.g.,Hamlet and Lettenmaier
2005; Vose et al. 2014; Oyler et al. 2015a), which makesCorresponding author: Daniel Walton, waltond@ucla.edu
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them better suited for long-term trend analysis. Some
datasets also include uncertainty estimates or facilitate
calculations of uncertainty (e.g., Oyler et al. 2015a;
Newman et al. 2015).

Differences in interpolation algorithms can lead
to large differences in climatologies (Simpson et al.
2005; Daly 2006; Stahl et al. 2006; Daly et al. 2008;
Mizukami et al. 2014). For example, Daly et al. (2008)
compared their dataset, PRISM, to Daymet (Thornton
et al. 1997) and WorldClim ( Hijmans et al. 2005) over
the continental United States. PRISM determines
temperatures using a local temperatureÐelevation re-
lationship calibrated from nearby stations. Stations
are given higher weights if they are closer to the tar-
get grid cell, and if they have similar coastal proximity
or topographic position (among other factors). Day-
met also uses stations to determine a local temperatureÐ
elevation relationship, but stations are weighted using
a truncated Gaussian Þlter centered at the target
grid cell. Meanwhile, WorldClim Þts a thin-plate
spline to station data to generate a temperature
surface. Differences in climatology between these
datasets were found to be largest over complex terrain
and coastal areas of the western United States. January
minimum temperatures (Tmin) in WorldClim and
Daymet were found to be have cold biases of 38Ð48C
in complex terrain, which Daly et al. concluded were
due to failing to account for cold-air pooling. Mean-
while, along the central California coast, WorldClim
and Daymet have biases in maximum temperature
(Tmax) that likely result from poorly capturing the
onshore marine layer, which complicates the relation-
ship between temperature and elevation (Johnstone
and Dawson 2010; Iacobellis and Cayan 2013). In
contrast, PRISM accounts for coastal proximity and
topographic position, which could explain why it out-
performs the others in complex terrain and along
the coast.

Oyler et al. (2015a)compared PRISM and Daymet to
TopoWx. TopoWx is unique because it uses remotely
sensed land skin temperature (LST) as an auxiliary
predictor. Oyler et al. compared the datasets over the
complex terrain of Nevada, where cold air pooling
causes inversions in Tmin. TopoWx has the strongest
inversions, PRISM has similar but slightly weaker in-
versions, and Daymet has comparatively smooth tem-
perature variations without inversions. Oyler et al.
found that elevation alone is weak predictor of Tmin,
explaining only 6% of the variance in this region, while
LST explained 77%. This could explain why DaymetÑ
which uses elevation, but does not use LST or physically
based station weightsÑdoes not capture inversions
here.

Previous comparisons have found potential biases in
station-based gridded datasets that use Þxed lapse rates
when accounting for elevation (Mizukami et al. 2014;
Newman et al. 2015). Newman et al. (2015)compared
their ensemble gridded dataset to that of Maurer et al.
(2002; henceforth this dataset is referred to simply as
ÔÔMaurerÕÕ), and noted that Maurer is consistently colder
at high elevations. Newman et al. attribute this to the use
of a Þxed 6.58C km2 1 lapse rate in Maurer. Mizukami
et al. (2014), also found Maurer to be relatively cold at
high elevations.

Often the term ÔÔgridded dataÕÕ is used to mean
station-based gridded datasets only. However, there are
multiple ways of generating historical data on a regular
grid. A second approach is to run an atmospheric model
that assimilates historical observations. Datasets con-
structed in this way are referred to as reanalysis. There
are many global or continental-scale reanalysis products
that assimilate observations [e.g., NARR, MERRA,
NOAA-20CR, CERA-20C, and ERA-20C; for details,
seeDee et al. (2016)]. However, the resolutions of these
datasetsÑranging from 0.38to 58Ñare too low for many
applications. Thus, reanalysis is often downscaled to
higher resolution (Cosgrove et al. 2003; Kanamitsu and
Kanamaru 2007; Rasmussen et al. 2011; Stefanova et al.
2012; Xia et al. 2012; Abatzoglou 2013; Walton et al.
2015, 2017). One straightforward way to downscale re-
analysis is with bilinear interpolation. For example, the
temperature forcings in the North American Land Data
Assimilation System version 2 dataset (NLDAS-2; Xia
et al. 2012) are derived by interpolating North American
Regional Reanalysis (NARR; Mesinger et al. 2006) to
1/88resolution. Reanalysis can also be downscaled with
a regional climate model, a process referred to as
dynamical downscaling. Under this method, a regional
climate model is forced at the lateral and ocean sur-
face boundaries by reanalysis. For example,Kanamitsu
and Kanamaru (2007) downscaled 200-km resolution
NCEPÐNCAR global reanalysis (Kalnay et al. 1996) to
10-km resolution over California with the Regional
Spectral Model (Juang and Kanamitsu 1994). Similarly,
Walton et al. (2015) downscaled the 32-km resolution
NARR to 2-km resolution over the Los Angeles region
with the Weather Research and Forecasting Model
(WRF; Skamarock et al. 2008), and used a similar WRF
setup to downscale NARR to 3-km resolution over the
Sierra Nevada mountains (Walton et al. 2017).

Previous assessments of gridded datasets have been
limited in a variety of ways. Some have only considered
station-based datasets and excluded downscaled re-
analysis (Daly et al. 2008; Newman et al. 2015; Oyler
et al. 2015a). Many have compared only two or three
datasets (Daly et al. 2008; Bishop and Beier 2013;
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Mizukami et al. 2014; Newman et al. 2015; Oyler et al.
2015a). Behnke et al. (2016a)performed one of the most
comprehensive evaluations to date, which considered
eight datasets, including interpolated reanalysis, but
datasets were only evaluated at station locations.
Station-based datasets are constrained to match station
data, so only evaluating them at station locations may
give a misleading picture of their overall realism.
Previous assessments of gridded datasets have excluded
dynamically downscaled reanalysis. Dynamically down-
scaled reanalysis could have an advantage away from
stations, to the extent that it realistically simulates phys-
ical processes that cause important spatial variations,
such as onshore penetration of the marine layer in the
coastal zone and cold-air pooling in complex terrain.
Station-based datasets either struggle to capture these
processes (e.g., Daymet, WorldClim, and Maurer) or at-
tempt to model their effects through auxiliary predictors
or physically based weights (e.g., TopoWx and PRISM).

One effect that has not been explored in previous
assessments is snowÐalbedo feedback (SAF). Snow is
highly reßective, and reductions in snow cover typically
reveal surfaces that absorb more solar radiation, leading
to warmer temperatures and further reductions in snow
cover (Cubasch et al. 2001; Holland and Bitz 2003).
Dynamically downscaling explicitly simulates SAF
(Salathé et al. 2008; Letcher and Minder 2015; Walton
et al. 2017), but it is unknown whether its effects are
captured by station-based datasets. Low station density
at high elevations could make it challenging to capture
the narrow bands of ampliÞed temperatures associated
with SAF ( Walton et al. 2017).

This study looks to answer the following questions
about high-resolution temperature datasets:

1) How do temperature climatologies, variability, and
trends in these datasets differ?

2) Can these differences be explained in terms of their
methodological choices?

3) Which datasets are most realistic? While this question
can be answered at station locations by comparing
with observed data, it is challenging to answer away
from stations where there are no observations to rely
on. However, in some instances, there are physical
arguments as to why some datasets are more realistic.

4) Does dynamically downscaled reanalysisÑwhich
explicitly simulates relevant processes (however im-
perfectly)Ñcorroborate the spatial and temporal var-
iations in station-based datasets? How convergent
are these orthogonal approaches of creating gridded
temperature data?

5) Are dynamical downscaled reanalysis and interpo-
lated reanalysis equally realistic?

To answer these questions, this study compares eight
high-resolution gridded datasets with a long running
subset of the Global Historical Climatology NetworkÐ
Daily (GHCND) stations ( Menne et al. 2012a,b). The
comparison is performed over California, which has
coastal areas with maritime inßuence, complex terrain
experiencing cold-air pooling, and high-elevation
mountains with signiÞcant seasonal snow cover. The
datasets used here are the following:

d PRISM ( Daly et al. 2008),
d TopoWx ( Oyler et al. 2015a),
d Daymet (Thornton et al. 1997),
d Livneh ( Livneh et al. 2013; Maurer et al. 2002),
d Hamlet [an extension of Hamlet and Lettenmaier

(2005)],
d Metdata (Abatzoglou 2013),
d NLDAS-2 ( Xia et al. 2012), and
d NARR dynamically downscaled with WRF ( Walton

et al. 2017).

Together, these eight datasets represent the wide range
of approaches to creating gridded temperature data
discussed above. For a summary of their important
features, seeTable 1.

This paper is structured as follows.Section 2provides
detailed information about the eight gridded datasets.
Section 3 covers the methodology used to assess their
climatologies, variability, and trends. Results are given
in section 4. Major Þndings are summarized and dis-
cussed insection 5.

2. Data

a. GHCND station data

California has 847 GHCND stations with some daily
data during the 1981Ð2010 period (Fig. 1a). These include
National Weather Service (NWS) Cooperative Observer
Program (COOP) stations, Weather Bureau Army
Navy (WBAN) stations, National Resource Conserva-
tion Service (NRCS) snow telemetry (SNOTEL) and
snow course sites, and U.S. Forest Service and Bureau of
Land Management (BLM) Remote Automatic Weather
Stations (RAWS). Only a fraction of these stations
have a sufÞciently long record to reliably calculate cli-
matologies and variability. So, we use a subset of 223
stations with at least 83% coverage during this period
(Fig. 1b) as determined by Behnke et al. (2016b) and
made available via the Dryad data package [see links
in Behnke et al (2016b)].

b. PRISM

The ParameterÐElevation Relationships on In-
dependent Slopes Model (PRISM; Daly et al. 1994,
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2008) is a modeling system used to derive gridded tem-
perature and precipitation data for the conterminous
United States. At each grid cell, an elevation regression
function is Þt to station data using a moving window.
Stations are weighted depending on multiple physical
factors that reßect their similarity to the target grid cell.
These factors include distance, cluster, elevation, coastal
proximity, topographic facet, vertical layer, topographic
position, and effective terrain height. Here we use the
monthly dataset AN81m with 2.5-min ( ; 4 km) resolu-
tion (PRISM Climate Group, Oregon State University;
available from http://prism.oregonstate.edu; data cre-
ated between 9 June 2013 and 9 June 2014). Although
station data are subjected to quality control procedures,
no adjustments are made to ensure temporal homoge-
neity in this PRISM dataset. PRISM incorporates data
from ; 10 000 stations spanning multiple networks, in-
cluding COOP, RAWS, the California Data Exchange
Center (CDEC), Agrimet, NRCS, the California Irri-
gation Management Information System (CIMIS), and
more (see http://prism.oregonstate.edu for details).
Many of these networks are part of GHCND ( Fig. 1a).

c. TopoWx

TopoWx or ÔÔTopography WeatherÕÕ is a gridded
dataset of daily Tmin and Tmax based on station data and
remotely sensed land skin temperature (Oyler et al.
2015a; data downloaded from http://www.scrimhub.org/
resources/topowx/). TopoWx covers the conterminous
United States at 30 arc sec (; 800-m resolution) for the
period 1948Ð2016. TopoWx uses station data from

GCHND stations ( Fig. 1a). TopoWx applies the ho-
mogenization algorithm of Menne and Williams (2009)
to correct for changes in observation practices, siting,
and instrumentation. Missing values are Þlled by com-
paring with nonmissing neighboring observations and
applying spatial regression (Durre et al. 2010). Climate
normals are computed using regression kriging, and
daily anomalies are computed using moving window
geographically weighted regression and inverse distance
weighting. To help estimate climate normals in complex
terrain and regions with low station density, TopoWx
uses remotely sensed land skin temperature as an aux-
iliary predictor.

d. Daymet

Daymet (Thornton et al. 1997) is a dataset of daily
meteorological variables on a 1 km3 1 km grid cover-
ing North America for the period 1980Ð2016. Version 3
(Thornton et al. 2016) is used here. Monthly summa-
ries of daily Tmax and Tmin were downloaded from
the Thematic Real-Time Environmental Distributed
Data Services (THREDDS) server ( http://thredds.daac.
ornl.gov/thredds/catalogs/ornldaac/Regional_and_
Global_Data/DAYMET_COLLECTIONS/DAYMET_
COLLECTIONS.html ) on 9 January 2017. Daymet Þts a
smooth curve to data from GHCND stations to a 1 km 3
1 km grid using a weighted average of nearby stations.
Weights are determined by a truncated Gaussian Þlter
centered at the target grid cell. The radius of the
Gaussian Þlter varies continuously throughout the do-
main to adjust for varying station density. Tmax and

FIG . 1. (a) All California GHCND stations with at least some data during the 1981Ð2010 period. GHCND includes stations from the
COOP, RAWS, WBAN, and SNOTEL networks. (b) GHCND stations with at least 83% coverage from 1981Ð2010. (c) Setup of 27-km
and 9-km resolution one-way nested WRF domains.
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Tmin values are adjusted for elevation using a linear
temperatureÐelevation relationship.

e. Livneh

The Livneh et al. (2013) dataset (this dataset is here-
after simply called ÔÔLivnehÕÕ) contains station-based
meteorological variables and modeled hydrologic vari-
ables that covers the conterminous United States at
1/168(; 6km) resolution for the period 1915Ð2011. (Livneh
data are available from https://ciresgroups.colorado.edu/
livneh/data/daily-obserational-hydrometeorology-data-
set-conus-extent-canadian-extent-columbia-river-basin.)
Livneh is an extension and upgrade to theMaurer et al.
(2002) dataset, which used a similar methodology but
spanned the shorter 1950Ð2000 period at a lower resolu-
tion of 1/88(; 12 km). Livneh temperatures are created
by gridding data from COOP weather stations over the
conterminous United States. Gridding is performed on
station temperature data via the synergraphic mapping
system (SYMAP; Shepard 1984). Under SYMAP, for a
grid point, the temperature is calculated as a weighted
average of the temperature at the four nearest stations.
The weights are determined by a combination of inverse
distance weighting and down-weighting stations that are
close to other stations. For a full description of the
gridding procedure, the reader is referred toLivneh et al.
(2013) and Maurer et al. (2002).

f. Hamlet

The original Hamlet and Lettenmaier (2005) dataset
spans 1915Ð2003 at 1/88(; 12km) resolution (data avail-
able from http://www.hydro.washington.edu/Lettenmaier/
Data/gridded/index_hamlet.html). It has now been ex-
tended to cover 1915Ð2015, its resolution has been in-
creased to 1/168 (; 6 km), and temperatures are now
adjusted so that 1971Ð2000 climate normals match PRISM.
This extension, henceforth simply ÔÔHamlet,ÕÕ was pro-
vided by Mu Xiao of UCLA. Hamlet generally follows the
Maurer methodology of interpo lating daily COOP station
data using the SYMAP algorithm. The two major differ-
ences are that 1) Hamlet temperatures are adjusted so
1971Ð2000 monthly normals match PRISM and 2) low-
frequency variability matches the quality-controlled U.S.
Historical Climatology Network (USHCN; Menne et al.
2009) stations. The use of quality-controlled stations to
determine low-frequency variability is intended to make
the Hamlet dataset suitable for trend analysis and long-
term hydrologic simulations. This extension appears to be
similar to the extension created byHamlet et al. (2010).

g. WRF

This dataset is a dynamical downscaling of 32-km
resolution NCEP North American Regional Reanalysis

(Mesinger et al. 2006) for the 1981Ð2015 period using
version 3 of the Weather Research and Forecasting
Model ( Skamarock et al. 2008) performed by Walton
et al. (2017). Under this setup, WRF is forced at the
lateral and ocean surface boundaries by NARR. WRF is
coupled to the Noah-MP land surface model (Niu et al.
2011). WRF is arranged in a one-way nested setup with a
27-km resolution domain covering the western United
States and northeastern PaciÞc Ocean, a 9-km domain
covering California, and a 3-km domain covering the
Sierra Nevada. This study focuses on the 9-km domain
covering California [ Fig. 1c (indicated as D2)]. A cubic
spline Þt to WRF 3-hourly output is used to calculate
daily Tmax and Tmin.

h. NLDAS-2

This dataset is the historical forcing for the North
American Land Data Assimilation System (NLDAS;
Cosgrove et al. 2003; Mitchell et al. 2004), which in-
cludes temperature data with 1-h temporal resolution
and 1/88spatial resolution. The most recent version of
the project, NLDAS-2 ( Xia et al. 2012), linearly interpo-
lates 32 km, 3-hourly NARR temperature data in space
and time to achieve 1/88, 1-hourly data for the period
1979Ð2016. So, like the WRF simulation, NLDAS-2 is a
downscaling of NARR, but using linear interpolation
instead of a regional climate model. Data were down-
loaded using the NASA Earthdata Simple Subset
Wizard (https://disc.gsfc.nasa.gov/SSW/).

i. Metdata

Metdata (Abatzoglou 2013) is a hybrid dataset of
meteorological forcings that combines the subdaily
temporal resolution of NLDAS-2, with the spatial cli-
matologies and monthly variability of PRISM. Metdata
is available for the 1979Ð2016 period at 4-km horizontal
resolution from http://metdata.northwestknowledge.
net. To create Metdata, NLDAS-2 subdaily anomalies
(relative to monthly means) are interpolated to 4-km
resolution and added to PRISM monthly means. Be-
cause this study analyzes monthly data and MetdataÕs
monthly variability comes from PRISM, Metdata is
grouped here with the station-based datasets.

3. Methods

a. Regridding to the WRF 9-km grid

To facilitate comparisons among the datasets, each
dataset is regridded to the 9-km WRF grid. For TopoWx
and Daymet, which have substantially higher resolution
than WRF, regridding is performed using a moving
window approach: averages are taken over all grid cells
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whose centers reside within the nearest WRF grid cell.
For all other datasets, regridding is performed with bi-
linear interpolation. Only land areas are considered as
some datasets do not have data over oceans or lakes. All
analysis is performed over the 1981Ð2010 period. For
comparisons with GHCND station data, the nearest grid
cell in the regridded dataset is used. To adjust for ele-
vation differences between GHCND station locations
and the nearest WRF grid cell, a lapse rate of 6.58C km2 1

is used. This adjustment is only made for Tmax. No
adjustment is made for Tmin, because Tmin differences
were found to be only weakly correlated with elevation
differences.

b. Climatologies

Annual climatologies are computed for each gridded
dataset. Climatologies are displayed two ways: as dif-
ferences relative to the GHCND station data, and as
differences relative to the average of the station-based
gridded datasets. Station data are not without error, but
collectively they represent our best primary source of
temperature data. Thus, if a gridded dataset has large
differences with many stations, then the gridded dataset
is probably biased. Meanwhile, differences with the
station-based gridded dataset average are not used to
detect biases, necessarily, but they do show how the
gridded datasets compare to each other. Importantly,
these differences are spatially completeÑunlike the
differences with GHCND stations dataÑso they reveal
how the datasets compare to each other away from the
stations.

c. Linear trends

Linear trends are computed at each grid cell using
least squares linear regression on the full sequence of
monthly anomalies (all 360 months in the 1981Ð2010
period). This is too short a period to draw inferences
about overall historical trends in temperatures. Instead,
this analysis is intended to highlight differences in trends
between the datasets. Important differences are expected
between datasets based on whether they account for in-
homogeneities in the data. Linear trends are also com-
puted for the GHCND station data, using all nonmissing
monthly anomalies.

d. Variability

To compare temperature variability, the standard
deviation of the full sequence of monthly temperature
anomalies is computed for the period 1981Ð2010 at each
grid cell. Variability is also computed for GHCND sta-
tion data, using all nonmissing monthly anomalies. For a
deeper investigation into spatial covariability, empirical
orthogonal function (EOF) analysis is performed on the

full sequence of monthly anomalies. EOFs (spatial
patterns) represent the primary modes of spatial co-
variability within the domain. The corresponding prin-
cipal components (PCs) are time series that represent
how these patterns are scaled up and down in time. The
three leading EOFs are compared, along with their
principal components.

e. Snow–albedo feedback

To test for SAF, April temperature differences are
computed between 2007, a warm year with low snow
cover, and 2010, a cold year with high snow cover. April
snow cover differences are computed for WRF and re-
motely sensed data from the Moderate-Resolution Im-
aging Spectroradiometer onboard the Terra satellite
(MODIS/ Terra Snow Cover Monthly L3 Global 0.05
CMG; Hall et al. 2006; data available from http://nsidc.
org/data/MOD10CM ). Comparing temperature and
snow cover differences will allows us to determine
whether WRF and the other datasets have similarly
ampliÞed temperature differences due to SAF in narrow
bands where snow cover is lost.

f. Surface lapse rates

Coastal areas and complex terrain in California may
be subject to inverted temperature proÞles from pene-
tration of the marine layer and cold-air pooling
(Lundquist et al. 2008; Daly et al. 2010). If interpolation
algorithms do not account for the complicated re-
lationships between temperature and elevation, then
they may produce errant temperature patterns. Here we
examine surface lapse rates in three representative da-
tasets: TopoWx, which uses satellite LST as an auxiliary
predictor and has been shown to better capture Tmin in
complex terrain (Oyler et al. 2015a); PRISM, which
explicitly incorporates physical factors like coastal
proximity in its regression weights; and Livneh, which
uses a Þxed lapse rate of 6.58C km2 1. To calculate the
surface lapse rate at each grid cell, linear regression is
applied to temperature and elevation data from sur-
rounding grid cells (deÞned as grid cells within two grid
lengths in the x or y direction).

In addition, the topographic dissection index (TDI;
Holden et al. 2011) is used to determine where stations
are located relative to local topographic minima and
maxima. Here we use the TDI computed by Oyler et al.
(2015a) on the 800-m TopoWx grid, which uses Þve
spatial windows (n 5 5) with sizes 3, 6, 9, 12, and 15 km.
With this setup, TDI values range from 0 to 5, with
0 being a multiscale local minimum and 5 being a mul-
tiscale local maximum. A stationÕs TDI is taken to be the
TDI at the grid cell closest to that station. Knowing a
stationÕs TDI tells us whether a stationÕs nearby grid
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cells are generally above or below it, which is useful for
understanding how lapse rates are applied.

4. Results

a. Climatologies

For Tmax, the station-based datasets match GHCND
within 18C at nearly all stations (Fig. 2). Most every-
where, the station-based datasets are similar (within 18C
of the station-based average). As expected, PRISM,
Metdata, and Hamlet have nearly identical climatol-
ogies. This is no surprise because Metdata is built on
PRISM monthly data, and Hamlet is adjusted to match
PRISM normals for 1971Ð2000. These three datasets

tend to have warmer than average Tmax values on the
windward side of the coastal mountains by up to 38C,
likely because PRISM has inverted Tmax conditions
along the coast (discussed further insection 4e). Mean-
while, Livneh Tmax is colder than average in the higher
elevations of the coastal mountains by up to 48C. In-
terestingly, comparing at the station locations, there is
little indication that Livneh diverges from the other
datasets; it is only revealed through a spatially complete
comparison. This highlights the importance of compar-
ing station-based datasets everywhere, not just at sta-
tion locations. The reanalysis-based datasets (NLDAS-2
and WRF) are substantially cooler throughout the do-
main. On average, NLDAS-2 and WRF are colder than
the station-based gridded average by 1.48 and 1.18C,

FIG . 2. Shown at top left is 1981Ð2010 Tmax annual-mean climatology (8C) at GHCND stations and averaged over the station-based
datasets. The remainder of the panels shows differences in 1981Ð2010 annual-mean Tmax climatology with GCHND station data and with
the station-based dataset average (8C). To adjust for the elevation differences between the GCHND stations and the nearest grid cell,
a lapse rate of 6.58C km2 1 was used.

15 MAY 2018 W A L T O N A N D H A L L 3797



respectively. They are also consistently colder than
GHCND data (by 1.8 8 and 1.68C, respectively), so it is
highly likely that they have a cold bias. WRFÕs cold bias
appears to be related to elevation (r 5 2 0.67) and with
a slope of approximately 2 1.08C km2 1 (based on least
squares linear regression). NLDAS-2 shows dramatic
differences with the other datasets along the edges of
topographic features and along the coast, exceeding 68C
in some cases. Although both WRF and NLDAS-2 are
derived by downscaling NARR, they have large differ-
ences in their climatologies, indicating that the choice of
downscaling technique is important.

For Tmin, the station-based datasets agree closely
with GHCND data (within 1 8C) at most stations (Fig. 3).
Differences are larger near strong terrain gradients, such
as those along the western side of the Sierra Nevada.
These discrepancies could be due to elevation mis-
matches between the stations and the WRF grid, as no

elevation adjustments were made to Tmin (adjustments
were made only for Tmax). TopoWx and Livneh are the
station-based datasets that differ most from the average.
Unlike the others, TopoWx uses satellite LST as a pre-
dictor for Tmin, which could explain why it differs.
Livneh is clearly the most different and is colder than
average by 28Ð68C in areas of complex terrain, such as
the coastal mountains of Northern California. This
likely is due to LivnehÕs use of a Þxed lapse rate, which is
examined in more detail in section 4e. WRF agrees
closely with the station-based dataset average over most
of the domain (domain-average difference of1 0.38C). It
does differ in a few areas, such as along the eastern
California border with Arizona, where it is 3 8Ð48C
colder, and on the lee sides of the several mountain
complexes, where it is 28Ð58C warmer. In contrast,
NLDAS-2 has a strong warm bias throughout the do-
main when compared with GHCND data and is much

FIG . 3. As in Fig. 2, but for Tmin. Note that no elevation-based adjustments are made for Tmin.
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warmer than the average (domain-average difference
of 1 2.98C). Thus, WRF has a more realistic Tmin cli-
matology than NLDAS-2.

Interdataset spread varies dramatically based on
which datasets are considered (Fig. 4). The spread in
Tmax among PRISM relatives (PRISM, Hamlet, and
Metdata) is small (domain average of 0.58C). This makes
sense as Hamlet is adjusted to match PRISMÕs clima-
tology, and Metdata is constructed using PRISMÕs
monthly mean values. It becomes larger, especially in
the coastal mountains, when all station-based datasets
are included (domain average of 1.38C). When WRF is
included, the domain-average spread increases to 2.38C,
with greater spreads at high elevations. When NLDAS-2
is included, spreads increase further, to 3.58C. A similar
progression happens for Tmin: 0.88C for PRISM rela-
tives, 2.58C for all station-based, 3.08C for station-based
and WRF, and 4.88C for all datasets. When all datasets
are included, certain locations have extreme spreads (up
to 128C), especially along strong topographic gradients,
where NLDAS-2 differs sharply from the others.

b. Trends

Linear trends in Tmax and Tmin differ substantially
among the datasets (Fig. 5). There are clear differences
in trends between those that use homogenized and un-
homogenized station data. Daymet, Livneh, PRISM,
and Metdata use unhomogenized data and have large

trends, exceeding 18C decade2 1 in some locations. In
contrast, TopoWx and Hamlet correct for inhomoge-
neities and have smooth trend Þelds free of nonclimatic
artifacts. The reanalysis-based datasets, WRF and
NLDAS-2, also have smooth trends Þelds, although
NLDAS-2 has a large trend (up to 18C decade2 1) in cen-
tral California that is inconsistent with the homogenized
datasets, and likely unphysical.

Two primary types of inhomogeneities are present in
unhomogenized gridded datasets. The Þrst type is due to
missing data or changes in data availability. For exam-
ple, Fig. 6b shows a location where Daymet has large
jumps (up to 108C) corresponding to when the closest
GHCND station (a RAWS station) station goes on and
ofßine. The second type is due to inhomogeneities in-
herited from the station data. For example, Fig. 6c
shows a case where Livneh has large inhomogeneities
(38Ð48C) that appear to be inherited from the nearest
COOP station. Livneh uses an inverse distance weight-
ing scheme that causes it to very closely match station
data near station locations, more closely than other
station-based datasets, which could explain why its trend
Þeld looks so similar to the station trends (Fig. 5).

For some datasets, the inhomogeneities are system-
atic and can be seen in the California average.Figure 7
shows California-average monthly anomalies relative to
TopoWx, a homogenized dataset likely to have more
trustworthy trends. Unhomogenized datasets (Daymet,

FIG . 4. Interdataset spread (8C) in climatological (top) Tmax and (bottom) Tmin calculated for four different
groups. Datasets included in each group are listed in the top-right corner of each panel.
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Livneh, PRISM, and Metdata) have cold trends in Tmax
relative to TopoWx ( Fig. 7a). This could be due in
part to the well-known transition in instrumentation
from liquid-in-glass (LiG) thermometers to maximumÐ
minimum temperature systems (MMTS), which had a
cooling effect on Tmax values (Menne et al. 2009). In

contrast, there are warm trends in Tmin for the non-
homogenized datasets relative to TopoWx (Fig. 7b).
Although there are nonclimatic warm trends at SNOTEL
stations (Oyler et al. 2015b), there is almost certainly
another factor at play here, since there are so few
SNOTEL stations in California and they are conÞned to

FIG . 5. Trend (8C decade2 1) in (top) Tmax and (bottom) Tmin based on linear regression of monthly anomalies for all months in 1981Ð
2010 time period. For GHCND, only anomalies from nonmissing months are used.

FIG . 6. Exploration of Tmin anomalies (8C) at selected grid cells where gridded datasets show inhomogeneities. (a) Locations of the two
grid cells (40.98718N, 122.84638W and 35.76058N, 117.38118W). (b) Monthly Tmin anomalies at location 1 (colored lines) and raw daily
Tmin values at two nearby GHCND stations. The Þrst (gray line) is the closest station to location 1 prior to 1990, and the second (black
line) is the closest from 1990 onward. (c) Monthly Tmin anomalies at location 2 (colored lines) and differences in daily Tmin between the
nearest COOP station and a nearby reference station (dark gray line).

3800 J O U R N A L O F C L I M A T E V OLUME 31



small areas of the domain (Fig. 1). A more inßuential
factor may be the LiG to MMTS transition, which had a
warming effect on Tmin ( Menne et al. 2009). Daymet
has the largest relative trend in California-average
Tmin, with an increase of over 18C between 1985 and
1992 alone (Fig. 7b). Based on our analysis, Daymet grid
cells at high elevations experience similar issues to those
of location 1 in Fig. 6b, namely that changes in data
availability cause large jumps, particularly when a
nearby station comes online. We suspect that the in-
troduction of RAWS stations (320 stations, starting in
1985) could explain DaymetÕs large trend (Fig. 8).

c. Variability

All datasets have greater temperature variability at
higher elevations (Fig. 9). In most datasets, Tmax vari-
ability peaks in the high elevations of Sierra Nevada, in
the range of 28Ð38C. At lower elevations, Tmax vari-
ability is in the range of 18Ð28C. NLDAS-2 has much
lower Tmax variability (0.5 8Ð18C) along a wider coastal
strip than GHCND or any of the other gridded data-
sets. Because NLDAS-2 differs so consistently from
GHCND along the coast, it is almost deÞnitely biased
there. Grid cells in this coastal strip likely reside

between land and ocean grid cells in NARR. Thus,
when linear interpolation i s applied, grid cells in this
strip have temperatures with intermediate properties
that are mixture between land and ocean. Since tem-
perature variability is lower over the ocean, these grid
cells are likely to have lower variability than their in-
land counterparts.

Tmin variability is lower than Tmax variability in all
datasets. For most datasets, Tmin variability is generally
in the 1Ð1.58C range at low elevations and in the 1.58Ð28C
at higher elevations. TopoWx and Hamlet have the least
Tmin variability, probably in part because the apply
homogenization algorithms that remove nonclimatic
jumps. NLDAS-2 has lower Tmin variability along the
coast, just like it does for Tmax. Meanwhile, Daymet
and Livneh have Tmin variability as high as 38C, which is
likely due to the inhomogeneities that lead to large
trends at these locations.

Generally, the datasets have very similar spatial pat-
terns (EOFs) and nearly identical time series (PCs) for
the major modes of variability. For Tmax, EOF1 ex-
plains between 78% and 86% of the variance, depending
on the dataset (Fig. 10). EOF1 is characterized by pos-
itive loadings over all of California, with larger loadings

FIG . 7. California-average (a) Tmax and (b) Tmin monthly anomaly differences with TopoWx, for
the period 1981Ð2010.
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at high elevations. PC1 (the time series representing
how EOF1 is scaled up or down each month) is nearly
identical for each dataset. One notable difference is that
Livneh, Hamlet, and NLDAS-2 have EOFs that do not
follow topographic contours as closely as the other da-
tasets. NLDAS-2 is also has much weaker loadings along
the coast, consistent with smaller variability found there
(cf. Fig. 9). EOF2 explains 6%Ð8% of the variance and
has a very consistent dipole pattern with positive load-
ings in Northern California and negative loadings in
Southern California. Agreement among PC2 time series

is also high, although not as high as for PC1. EOF3 is
another dipole mode, this time representing variability
that is oppositely phased between coastal and inland
locations (2%Ð4% of the variance). The corresponding
PC3s agree less than PC1s or PC2s. DaymetÕs EOF3
stands out for its irregular loading pattern, which again is
likely related to the inhomogeneities discussed above.

For Tmin, EOFs and PCs differ somewhat more than
Tmax (Fig. 11). For example, EOF1, characterized by all
positive loadings, explains 63%Ð81% of the variance, a
wider range than for Tmax (77%Ð86%). DaymetÕs EOF

FIG . 8. Year that each California RAWS station came online (colored dots). The red square marks location 1 from
Fig. 6, the grid cell where Daymet has a jump in 1990.

FIG . 9. Standard deviation (8C) of monthly Tmax and Tmin anomalies for the period 1981Ð2010. For GHCND, only anomalies from
nonmissing months are used.
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spatial patterns differ considerably from the others.
They have much higher loadings in the same regions that
have large, unphysical trends. Inhomogeneities are also
likely responsible for the unusual spatial pattern of
LivnehÕs EOF3. These results suggest that nonclimatic
variations can make signiÞcant contributions a station-
based datasetÕs variability, not just its long-term trends.

PRISM, Metdata, and TopoWx appear to have the
most plausible variability. Their main EOFs are free
from artifacts and their PC time series do not have no-
ticeable jumps or trends. Hamlet also has these qualities,
but its EOFs are much smoother in space and appear to
miss topographic effects. HamletÕs overly smooth EOFs
are a side effect of the way it avoids inhomogeneities.
Low-frequency variability is adjusted to match in-
terpolated values from stations in the U.S. Historical
Climatology Network, a small network of long-running
stations with continuous temperature records (Menne
et al. 2009). While excluding short-term stations may
help produce more realistic long-term trends, it has the

side effect of lowering the effective resolution for low-
frequency variability, resulting in overly smooth EOFs.
Meanwhile, WRF does not rely directly on station data
and appears free of inhomogeneity-related artifacts.
Overall, WRF EOF spatial patterns are broadly similar
to PRISM, TopoWx, and Metdata, but the smaller-scale
details are different. WRF also has somewhat smoother
Tmin spatial patterns, and does not have Þnescale vari-
ations (, 10 km) in complex terrain that the others do,
likely because of its lower resolution.

d. Effect of snow cover

WRF disagrees considerably with the other datasets
over the inßuence of SAF on temperature anomalies
(Fig. 12). WRF simulates large differences in snow cover
between April 2007 and April 2010, which are corrob-
orated by MODIS/ Terra satellite data. WRF tempera-
ture differences between these years can reach 78C at
grid cells where snow cover is lost, versus 18Ð48C in the
rest of the domain. Meanwhile, the other datasets do not

FIG . 10. Three largest Tmax EOFs and their associated PCs for each dataset for the period 1981Ð2010. Percentages of explained variance
are included in the top-right corner of each panel.
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show substantially enhanced temperature differences at
grid cells where snow cover is lost. It seems likely that
low station density at high elevations would limit
station-based datasets from capturing this effect. Overly
simplistic relationships between temperature and ele-
vation could also be problematic as they would not be
able to capture enhanced warming within a narrow el-
evation band. It may also be the case that WRFÕs SAF
strength is unrealistically high and actual temperature
differences are not ampliÞed as much as WRF suggests.
In a study of the Alps, Winter et al. (2017) found that the
ETH Zurich COSMO regional climate model (ETHZ-
CLM) produced springtime SAF strength values in the
08Ð58C range with a mode of 2.58C, while observational
estimates using station observations suggest that the
SAF strength is only 0.48C. Estimates of WRFÕs
springtime SAF strength for the Sierra Nevada are in the
18Ð48C range (Walton et al. 2017), which is similar to
ETHZ-CLM and greater than the 0.4 8C observational
estimate. Thus, it appears that station-based datasets are
missing a real effectÑthe enhanced warming from

snowÐalbedo feedbackÑbut the effect may be weaker
than WRF suggests.

e. Surface lapse rates

TopoWx and PRISM agree that Tmax inland lapse
rates are 48Ð88C km2 1 (Figs. 13a,b). Thus, LivnehÕs Þxed
lapse rate of 6.58C km2 1 is generally appropriate for
Tmax for most inland areas (Fig. 13c). Immediately
adjacent to the coast, PRISM differs considerably from
the others, showing strongly inverted conditions, with
lapse rates reaching2 108C km2 1. PRISM explicitly ac-
counts for the suppression of Tmax in low-lying coastal
areas due to the penetration of marine air by using
a coastal proximity factor and an inversion layer factor,
which could explain why it captures this well-known
effect (Daly et al. 2008). As for Tmin, both TopoWx and
PRISM have lapse rates near zero or even negative for
most of California ( Figs. 13d,e), likely reßecting night-
time radiation inversions and cold-air pooling. Thus,
using a 6.58C km2 1 lapse rate for Tmin is unsuitable for
large swaths of California (Fig. 13f).

FIG . 11. As in Fig. 10, but for Tmin.
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